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Abstract
Grangier, Roger and Aspect (GRA) performed a beam-splitter experiment to
demonstrate the particle behaviour of light and a Mach–Zehnder interferometer
experiment to demonstrate the wave behaviour of light. The distinguishing
feature of these experiments is the use of a gating system to produce
near ideal single-photon states. With the demonstration of both wave and
particle behaviour (in two mutually exclusive experiments) they claim to have
demonstrated the dual particle–wave behaviour of light and hence to have
confirmed Bohr’s principle of complementarity. The demonstration of the
wave behaviour of light is not in dispute. But we want to demonstrate, contrary
to the claims of GRA, that their beam-splitter experiment does not conclusively
confirm the particle behaviour of light, and hence does not confirm particle–
wave duality, nor, more generally, does it confirm complementarity. Our
demonstration consists of providing a detailed model based on the causal
interpretation of quantum fields (CIEM), which does not involve the particle
concept, of GRA’s which-path experiment. We will also give a brief outline of
a CIEM model for the second, interference, GRA experiment.

PACS numbers: 42.79.Fm, 03.70.+k

1. Introduction

There are countless experiments which demonstrate the wave behaviour of light. Two
typical experiments are the two-slit and Mach–Zehnder arrangements. That such experiments
demonstrate the wave behaviour of light, even where the light is feeble2 [1], is not in dispute.
What is questionable is the experimental evidence for the particle behaviour of light.

1 Alternative address: Wolfson College, The University of Oxford, Linton Road, Oxford OX2 6UD, UK.
2 By feeble light we mean light of such low intensity that on average only one photon at a time is in the apparatus.
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To avoid later misunderstanding of the essential point of this paper, it is necessary for me
to make clear that I use the term ‘particle behaviour’ to refer to the description prior to the final
detected result but not to the character of the final detected result. This is a more restrictive
usage than is usual in the literature where the term ‘particle behaviour’ also encompasses the
character of the final detected experimental result. I also use the term ‘particle behaviour’
in two context-dependent ways: in the context of Bohr’s principle of complementarity I use
the term ‘particle behaviour’ to refer to the description of the experiment in terms of the
complementary particle concept (understanding that according to Bohr the particle concept,
along with other complementary concepts, is an abstraction to aid thought to which physical
reality cannot be attached). In the context of the causal interpretation I take the term ‘particle
behaviour’ to be synonymous with ‘particle ontology’. Similar considerations apply to the
term ‘wave behaviour’, but the distinction here is not so crucial since a main point of this
paper is to demonstrate that a final detected result showing a particle character does not force
a particle description or particle ontology prior to the final detected result.

More recent and interesting experiments concerning particle–wave duality and
complementarity have been suggested and subsequently performed. Ghose et al [2] proposed
an experiment involving tunnelling between two closely spaced prisms which has since been
carried out by Mizobuchi et al [3] (although the statistical results of the experiment have
been questioned by [4–6]). Later, Brida et al [6] realized an experiment suggested by Ghose
[5] in which tunnelling at a twin prism arrangement is replaced by birefringence. Also of
interest is Afshar’s experiment [7]. All of these experiments use light and aim to disprove
or generalize3 complementarity (whereas GRA’s aim was to confirm complementarity) by
claiming to have demonstrated particle and wave behaviour in the same experiment. In
all of these experiments, the final detection result is attributed by the authors to which-path
information and, therefore, to particle behaviour (according to the usual criteria accepted in the
literature), but the experiments are so arranged that the light undergoes a process (tunnelling
in the case of Mizobuchi et al’s experiment, birefringence in Brida et al’s experiment and
interference in Afshar’s experiment) which the authors claim necessarily represents wave
behaviour. Hence, they claim to observe wave and particle behaviour in the same experiment.
We do not agree with them for the same reasons that we do not agree with GRA’s claim to
have proved complementarity, a claim we will argue against in this paper. Generally, we take
the view that complementarity is so imprecise that it can neither be proved nor disproved. We
will elaborate further on this in the rest of the paper with regard to the GRA experiments,
but we will also briefly describe and comment further on Mizobuchi et al’s, Brida et al’s
and Afshar’s experiments in section 6. We have chosen to focus on the GRA experiments
in this paper because they were the first to introduce a gating system for producing genuine
single-photon states and because their experiments lend themselves to illustrating important
features of CIEM. Further, the detailed treatment of this experiment serves as a model that
can be easily adapted to the later experiments, thereby providing arguments against the claims
of observing simultaneous wave and particle behaviour in these experiments. The quantum
eraser experiment of Kim et al [11] is a variant of the Wheeler delayed-choice idea [12, 13].
The use of particle–wave duality and complementarity in this experiment seems to imply that
a measurement performed in the present affects the outcome of an earlier measurement. This
now raises the further issue of the present affecting the past, which is surely unacceptable. We
will also give a brief description and comment on this experiment in section 6.

3 Brida et al view the observation of simultaneous particle and wave behaviour as demonstrating a need to generalize
complementarity in the sense of Wootters and Zurek [8] and Greenberger and Yasin [9]. I have argued that the
generalization in fact completely contradicts complementarity and is the antithesis of Bohr’s teachings [10]. See
section 6 for further discussion of this point.
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Experimental evidence for the particle behaviour of light is mainly of two forms: which-
path experiments and the photoelectric effect (also the Compton effect). A closer look at
each of these shows that neither unambiguously demonstrates particle behaviour. In the
case of the photoelectric effect, it is well known that a semiclassical description can be
given in which the light is treated as a classical electromagnetic field and only the atom is
treated quantum mechanically [14]. A weakness of this counter example is that semiclassical
radiation theory is known not to be fully consistent with experiment and fails in those cases
where light exhibits nonclassical properties (as in some experiments which involve second-
order coherence). Further, it is not clear that a semiclassical model of the photoelectric effect
can explain the experimental fact that the photon is absorbed in a time of the order of 10−9 s
([15], p 10). Indeed, it was just this feature of the photoelectric effect that seemed to require
that a photon be a localized particle prior to absorption, and is perhaps the reason why the
photoelectric effect is commonly regarded as evidence for the particle behaviour of light. A
more convincing argument against the photoelectric effect as evidence of particle behaviour
is the provision of a fully quantum-mechanical model of the photoelectric effect based on
the causal interpretation of the electromagnetic field (CIEM) [16–18]. In CIEM, light is
modelled as a real vector field; there are no photon particles4. The field has the property of
being nonlocal, meaning that an interaction at one point in the field can change the field at
points beyond ct . The CIEM model of the photoelectric effect is of the nonlocal absorption
of a photon by a localized atom. The photon prior to absorption may be spread over large
regions of space. The fact that the absorption is nonlocal explains the experimental result
that the absorption of the photon takes place in a time of the order of 10−9 s. We are not
forced to accept that the photon must be localized prior to absorption. We conclude that the
photoelectric effect cannot be regarded as conclusive evidence for the particle behaviour of
light. We note that the Compton effect, also commonly accepted as evidence for the particle
behaviour of light, can also be modelled by CIEM ([18], p 343), so that this also cannot be
taken as evidence for the particle behaviour of light. To be clear, we are not claiming that
the final detected results of the photoelectric and the Compton effect do not have a particle
character (they clearly do). What we claim is that a particle description prior to the final result,
whether from the perspective of complementarity or from the perspective of an ontology, is
not forced upon us. This is because the particle character of the experimental results can be
explained in terms of a wave model.

Let us now turn to which-path experiments. In a typical which-path experiment light
has a choice of two paths. Determining which-path the light actually took is considered as
proof of particle behaviour. As Bohr showed in response to Einstein’s famous which-path
two-slit experiment, if the path is determined with certainty, interference is lost [19]. Consider
a which-path two-slit experiment in which we determine the path by closing one of the holes
(obviously losing interference). Although crude, it is conceptually equivalent to Einstein’s
experiment. The point is that even when we close the hole and are certain which-path the
light took, this does not rule out a wave model. This argument holds even in more refined
which-path two-slit experiments. We may conclude that in such experiments the which-path
criteria for particle behaviour is somewhat arbitrary.

There is an aspect of the two-slit experiment that seems to be universally overlooked
and that we wish to draw attention to. Einstein’s aim in his which-path two-slit experiment
was to obtain the path of an individual photon and still retain an interference pattern, thereby

4 From here on we will use the term ‘photon’ very loosely to refer to a quantum of energy which may or may not be
spread out over large regions of space with a value of h̄ω for a Fock state or with a value an average around h̄ω for a
wave packet.
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experimentally detecting particle and wave behaviour in the same experiment5. This is contrary
to Bohr’s principle of complementarity which requires mutually exclusive experimental
arrangements for complementary concepts [19–21]. As we have said, Bohr was able to show
that a certain determination of the photon path would destroy the interference pattern. Bohr’s
response was almost universally accepted and complementarity was saved. But consider this:
forget path determination and consider a two-slit experiment in which an interference pattern
is formed. This interference pattern is built up of a large number of individual photoelectric
detections (or some similar process in a photographic emulsion). If the photoelectric effect is
accepted as evidence of the particle behaviour of light, then is not particle and wave behaviour
observed in the same experiment?

We now turn to another which-path experiment which uses a beam splitter. This will be
our main focus in this paper because we consider GRA’s version of this experiment, which uses
an atomic cascade and a gating system to produce a near ideal single-photon state, as perhaps
the best experimental attempt to demonstrate the particle behaviour of light [22, 23]. In a
wave model, light is split into two beams at the beam splitter. In a particle model, each photon
must choose one and only one path. Thus, using feeble light (one photon at a time) a particle
model predicts perfect anticoincidence, whereas some coincidences are expected in a wave
model. GRA therefore took perfect anticoincidence as the signature of particle behaviour.
GRA quantified this feature in terms of the degree of second-order coherence. Semiclassical
radiation theory predicts g(2) � 1. As we shall see, quantum-mechanical coherent or chaotic
states give results in the classical regime. This is to be expected, as neither chaotic nor
coherent light exhibits nonclassical behaviour. For number states on the other hand, perfect
anticoincidence is expected, so that g(2) = 0.

Photoelectric detectors are placed in each output arm of the beam splitter. For a detection
to take place there must be enough energy to ionize an atom in the detector. For classical
light, and quantum-mechanical chaotic or coherent light, there is always some probability
that more than one photon is present after the beam splitter however feeble the light, and this
entails the possibility of coincidences. But, for a single-photon state there is enough energy to
ionize only a single atom in one and only one output arm of the beam splitter, so that perfect
anticoincidence is predicted.

The novelty of the GRA experiments is the use of an atomic cascade and a gating system,
which we describe below, in order to produce near ideal single-photon states. Their results
gave a value of g(2) much less than 1 and confirmed the expected anticoincidence. GRA
interpreted their results to be a conclusive demonstration of the particle behaviour of light.

But, underlying the assertion that anticoincidence is a signature for particle behaviour is
the assumption that the photoelectric detection process (or any other atomic absorption process)
is local. This implies that the photon is a localized particle before absorption by the detecting
atom. But, we saw above that the quantum theory does not rule out nonlocal absorption in
the photoelectric effect (nor, more generally, in any atomic absorption process). In fact, no
model of light as photon particles that is consistent with the quantum theory has ever been
developed6. On the other hand, CIEM models light as a nonlocal field. Atomic absorption

5 Actually, Einstein considered Bohr’s principle of complementarity and quantum mechanics to be synonymous. By
experimentally contradicting complementarity Einstein wanted to demonstrate that quantum mechanics is incomplete
([20], p 127). We have argued elsewhere that Bohr’s principle of complementarity and quantum mechanics are not
synonymous ([13], p 299).
6 Ghose et al have developed a particle interpretation of bosons [24, 25], including the photon [26], based on the
Kemmer–Duffin formalism [27]. It is to be emphasized that this formalism, which allows an interpretation of bosons
as particles, applies in the approximation that the energies are below the threshold for pair production. We maintain
that the full theory does not allow a particle ontology. Since the particle ontology of the approximation stands in
contradiction to the ontology of the full field theory (since particle and wave concepts are mutually exclusive), we
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processes, including the photoelectric effect, are modelled as the nonlocal absorption of a
photon. CIEM has been shown to be fully consistent with the quantum theory [18]. Our main
purpose in this paper is to provide a model that explains perfect anticoincidence that does not
treat photons as particles. By showing that anticoincidence experiments do not rule out a wave
model we prove that GRA’s experiment cannot be viewed as conclusive evidence for particle
behaviour of light.

The wave behaviour of light has been confirmed a countless number of times for chaotic
or coherent sources. Following Einstein’s 1905 explanation of the photoelectric effect [28]
in which the idea of photon particles was first invoked, the question was raised as to whether
or not, in very low intensity experiments, single photons alone in the apparatus can produce
interference. Numerous experiments using feeble light followed [1]. With a few exceptions the
conclusion was reached that single photons can interfere with themselves. In such experiments
the energy flux E is calculated and the number of photons per unit area per unit time is calculated
using E/h̄ω. E is reduced to such low levels that it is more probable than not that only one
photon is present in the apparatus at any one time. However, the probability that more than
one photon is present remains, so that the single-photon nature of these experiments can be
questioned. By building a Mach–Zehnder interferometer around their which-path apparatus
GRA were able to confirm that the near ideal single-photon state produced the expected
interference. Although no surprise, GRA’s experiment is perhaps the first experiment to
confirm the interference of single photons. The wave nature of light is not disputed and it is
obvious how in CIEM interference is obtained given that light is modelled as a field (always).
We will nevertheless outline the CIEM treatment of the Mach–Zehnder interferometer given
in detail in [13].

CIEM is a hidden variable theory. There is a large literature on hidden variable theories
and we direct the interested reader to the three articles cited in [29]. Two of these, one old
and one new, are surveys of hidden variable theories and include a comprehensive list of
references. We also refer the reader to two interesting PhD thesis in the area of hidden variable
theories [30, 31].

In the next sections we describe GRA’s two experiments focusing on theoretical
derivations, and then go on to give the CIEM model of these experiments, focusing on
the which-path experiment.

2. The GRA experiments

The following description of the GRA experiments is based mainly on [22]. The experiments
use the radiative cascade of calcium 4p2 1S0 → 4s4p 1P1 → 4s2 1S0 described in [32]. The first
cascade to the intermediate state yields a photon ν1 of wavelength 551.3 nm. The intermediate
state, with lifetime τ = 4.7 ns, decays according to the usual atomic decay law for the lifetime
of a state ([33], p 538):

P(t) = 1 − e−t/τ , (1)

where P(t) is the probability of decay in time t. The second cascade photon ν2 has wavelength
422.7 nm. The ν2 photon, according to the decay law, is emitted with near certainty within
the time ω = 2τ = 9.8 ns of emission of the first ν1 photon. The number of ν1 photons per

maintain that the particle ontology of the approximate theory cannot have physical significance (Ghose et al do
not address this issue). A further point is this: as Ghose himself points out ([25], p 1448) for the boson particle
interpretation to be consistent negative energy solutions must be interpreted as antiparticles moving backwards in
time. In this case, an EPR-correlated particle–antiparticle pair would exhibit the pathological feature of a nonlocal
connection between the present and the past (we note that this particular criticism does not apply to the electromagnetic
field). For more details on this and related approaches see [31].
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Figure 1. GRA’s which-path experiment.

second, N1, is counted by photomultiplier PM1, and each ν1 photon triggers a gate of duration
ω. Because the probability of decay within gate ω is high, there is a high probability that the
ν2 partner of ν1 enters the beam splitter. For low count rates we can be nearly certain that
there is only one ν2 photon in the beam-splitter arrangement within the gate time ω. In this
way a near ideal single-photon state is produced.

3. GRA’s which-path experiment

Refer to figure 1. The photomultipliers PMt and PMr count the number of transmitted and
reflected ν2 photons per second, and photomultiplier PMc counts the number of coincidences
per second. These count rates are given by Nt,Nr and Nc, respectively. The counts are taken
over a large number of gates with a total run time T of about 5 h. The probabilities for single
and coincidence counts are given by

pt = Nt

N1
, pr = Nr

N1
, pc = Nc

N1
. (2)

The classical and quantum-mechanical predictions for the coincidence counts are very
different. In their experiment, GRA measured the quantity α, which they defined as [22]

α = Coincidence Probability

Accidental Coincidence Probability
= pc

ptpr

= N1Nc

NtNr

. (3)

Both classically and quantum mechanically, the quantity α is a special case of the degree of
second-order coherence. Classically, g(2)

c is defined by ([34], p 111)

g(2)
c (r1t1, r2t2; r2t2, r1t1) = 〈E∗(r1t1)E

∗(r2t2)E(r2t2)E(r1t1)〉
〈|E(r1t1)|2〉〈|E(r2t2)|2〉 , (4)

where E is the electric field vector. For r1 = r2 and t1 = t2, g
(2)
c reduces to

g(2)
c = 〈(E∗E)2〉

〈E∗E〉〈E∗E〉 = 〈I 2〉
〈I 〉2

, (5)

where I is the intensity. We will see in the next subsection that α = g(2)
c . Similar definitions

apply in quantum mechanics ([34], p 219):

g(2)(r1t1, r2t2; r2t2, r1t1) = 〈Ê−
(r1t1)Ê

−
(r2t2)Ê

+
(r2t2)Ê

+
(r1t1)〉

〈Ê−
(r1t1)Ê

+
(r1t1)〉〈Ê−

(r2t2)Ê
+
(r2t2)〉

, (6)
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where Ê’s are quantum-mechanical operators defined by

Ê
+
(rt) = i

V
1
2

∑
kµ

√
h̄kc

2
ε̂kµâkµ ei(k·x−ωkt),

Ê
−
(rt) = − i

V
1
2

∑
kµ

√
h̄kc

2
ε̂kµâ

†
kµ e−i(k·x−ωkt).

(7)

By substituting equation (7) into equation (6) with r1 = r2 and t1 = t2 and considering only
a single mode and a single polarization direction, equation (6) reduces to

g(2) =
〈
a
†
2a2a

†
1a1

〉
〈
a
†
1a1

〉〈
a
†
2a2

〉 . (8)

For a single mode and single polarization direction, the quantum-mechanical operator for the
magnitude of the intensity ([34], p 184; [13], p 304) reduces to

Î1 = h̄kc2

V
a
†
1a1. (9)

Multiplying the numerator and the denominator of equation (8) by (h̄kc2/V )2, we can write
g(2) in terms of the expectation value of the intensity operator:

g(2) = 〈I1I2〉
〈I1〉〈I2〉 . (10)

Again, we will see in the next subsection that this is equivalent to GRA’s α.
In the following subsections, we calculate the classical prediction for g(2) using

semiclassical radiation theory and compare this with the quantum-mechanical predictions
for g(2) for a number state, a coherent state and a chaotic state.

3.1. g(2)
c for a classical field

We now calculate the classical prediction for the various probabilities. The intensity of the
nth gate is given by the time average of the instantaneous intensity I (t):

in = 1

ω

∫ tn+ω

tn

I (t) dt. (11)

Although the electromagnetic field is treated classically, the photoelectric detection is treated
quantum mechanically. This semiclassical radiation theory gives the probability for a detection
as proportional to the intensity and to time ([34], p 183 and p 185; [35] p 31 and p 40) (as is
the case quantum mechanically). The probabilities for singles counts during the nth gate are,
therefore,

ptn = αt inω, prn = αrinω, (12)

where αt and αr are the global detection efficiencies. The intensity averaged over all the
gates is

〈in〉 = 1

N1T

N1T∑
n=1

in, (13)

where N1T is the total number of counts in PM1, which is equal to the total number of gates.
So, the overall probability for singles counts becomes

pt = αtω〈in〉, pr = αrω〈in〉. (14)
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During a single gate, the probability of a detection in one arm is statistically independent of
detection in the other arm. Therefore, the probability of a coincidence count during a single
gate is given as the product of the probabilities of detection in each arm:

pcn = αtαrω
2i2

n. (15)

The probability of a coincidence count averaged over all the gates becomes

pc = αtαrω
2
〈
i2
n

〉
. (16)

If the coincidences are purely accidental, then the probabilities pt and pr over the ensemble of
all gates are statistically independent, so that the accidental coincidence probability is given
by the product

ptpr = αtαrω
2〈in〉2. (17)

This represents the minimum classical probability of coincidence. These averages satisfy the
inequality ([36], p 185, inequality no. 4)〈

i2
n

〉
� 〈in〉2, (18)

from which it follows, by using equations (16) and (17), that

pc � ptpr . (19)

In terms of α, equation (3), we can also write the inequality (18) as

α � 1. (20)

Substituting equations (16) and (17) into equation (3) gives

α =
〈
i2
n

〉
〈in〉2

, (21)

which is equal to the classical second-order coherence function g(2)
c given in equation (5).

3.2. Quantum mechanical g(2) for a number state, a coherent state and a chaotic state

In quantum mechanics, the same reasoning as for the classical case leads to the same
expressions for the probabilities pt , pr and pc, and for α. The difference is that the classical
averages of the intensities are replaced by quantum-mechanical expectation values of the
intensity operator. Thus,

α = pc

ptpr

= αtαrω
2〈IαIβ〉

αtω〈Iα〉αrω〈Iβ〉 = 〈IαIβ〉
〈Iα〉〈Iβ〉 =

〈
b†

αbαb
†
βbβ

〉
〈
b
†
αbα

〉〈
b
†
βbβ

〉 . (22)

The subscripts α and β refer to the horizontal and vertical beams that emerge after the first
beam splitter. We see that α is equal to g(2), equation (8) or equation (10), in the quantum
case also.

To calculate g(2), we first consider the theoretical treatment of a single beam splitter. By
now a two-input approach to the beam splitter is almost universally accepted even when one
of the inputs is the vacuum7 (e.g., [38]), but some workers still use a single input ([34], p 222;8

[39], p 494)9. The two-input approach leads to an elegant mathematical description of the

7 In passing, we mention that Caves [37] uses a two-input approach in connection with the search for gravitational
waves using a Michelson interferometer. He suggests, as one of two possible explanations, that vacuum fluctuations
due to a vacuum input are responsible for the ‘standard quantum limit’ which places a limit on the accuracy of any
measurement of the position of a free mass.
8 Here the beam splitter is described as part of the Hanbury–Brown and Twiss experiment.
9 Here the beam splitter is used as part of an atomic interferometer.
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Figure 2. Input and output destruction operators.

action of a beam splitter in terms of a unitary 2×2 transformation matrix which has the form of
a rotation matrix [40]. Here, we will use a single-input approach since this greatly simplifies
the mathematical treatment of the GRA experiments in terms of CIEM, and since it gives
the same results as the two-input approach for the quantities we are interested in (expectation
values of the number operator, coincidence counts and interference terms). Further, both
approaches lead to essentially the same physical model of the GRA experiments in terms of
CIEM.

The single-input and two-output annihilation and creation operators are related as follows

a = t∗ααbα + r∗
αβbβ, a†

α = tααb†
α + rαβb

†
β. (23)

The b’s satisfy the usual commutation relation
[
bα, b†

α

] = [
bβ, b

†
β

] = 1 while any combination
of bα and bβ or their conjugates commute. To preserve the commutator

[
a, a†] = 1, we must

have

|tαα|2 + |rαβ |2 = t2 + r2 = 1, (24)

with |tαα|2 = t2 and |rαβ |2 = r2. Using equations (23) and (24) we may proceed to calculate
g(2) for various quantum states. We begin with the number state |n〉,

|n〉 =
(
a†

α

)n

(n!)
1
2

|0〉 =
(
tααb†

α + rαβb
†
β

)n

(n!)
1
2

|0〉. (25)

Use of the binomial theorem to expand the brackets gives

|n〉 = 1

(n!)
1
2

[(
n

0

) (
tααb†

α

)n
+

(
n

1

) (
tααb†

α

)(n−1)(
rαβb

†
β

)1
+

(
n

2

) (
tααb†

α

)(n−2)(
rαβb

†
β

)2

+ · · · +

(
n

n − 1

) (
tααb†

α

)1(
rαβb

†
β

)(n−1)
+

(
n

n

) (
rαβb

†
β

)n

]
|0〉. (26)

With this expression for |n〉 we can evaluate the expectation value for the number of photons
in the horizontal arm, 〈n|b†

αbα|n〉, by multiplying out the brackets, noting that cross-terms are
zero, and evaluating the action of the number operator on the various number states. After a
number of rearrangement steps we arrive at

〈
b†

αbα

〉 = 〈n|b†
αbα|n〉 = nt2

[
t2(n−1) + t2(n−2)r2 (n − 1)!

(n − 2)!
+ t2(n−3)r4 (n − 1)!

(n − 3)!2!

+ t2(n−4)r6 (n − 1)!

(n − 4)!3!
+ · · · + r2(n−1)

]
. (27)
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We recognize the series in the square brackets as the binomial expansion for (t2 + r2)n−1 = 1,
and we get 〈

b†
αbα

〉 = nt2. (28)

By the same procedure as above we also get the expectation value for the number of photons
in the vertical beam,〈

b
†
βbβ

〉 = 〈n|b†
βbβ |n〉 = nr2, (29)

and the expectation value for the number of coincidences,〈
b†

αbαb
†
βbβ

〉 = 〈n|b†
αbαb

†
βbβ |n〉 = n(n − 1)r2t2. (30)

Substituting the above expectation values into equation (8) gives the second-order coherence
function for a number state:

g(2) = n(n − 1)r2t2

nt2nr2
= (n − 1)

n
, n � 2. (31)

For n = 0, 1, g(2) = 0. We see that a single-photon input shows perfect anticorrelation,
contrary to the classical result for g(2)

c , equation (20). Next we consider the coherent state

|α〉 = e−|α|2/2
∑

n

αn

(n!)
1
2

|n〉. (32)

The expectation value in the horizontal arm is〈
b†

αbα

〉 = 〈α|b†
αbα|α〉 = e−|α|2 ∑

n=0

|α|2n

n!
〈n|b†

αbα|n〉

+ e−|α|2 ∑
n′

∑
n

n�=n′

(α∗)n
′

(n′!)
1
2

αn

(n!)
1
2

〈n′|b†
αbα|n〉. (33)

The second term consisting of cross-terms is zero. After substituting equation (28) into the
above, we get〈
b†

αbα

〉 = t2 e−|α|2 ∑
n=0

|α|2n

n!
n = t2 e−|α|2 |α|2

∑
n=0

|α|2n

n!
= t2 e−|α|2 |α|2 e|α|2 = t2|α|2. (34)

In a similar way, we calculate the expectation value of the number operator in the vertical
beam to be 〈

b
†
βbβ

〉 = 〈α|b†
βbβ |α〉 = r2|α|2, (35)

and the expectation value for coincidence counts to be〈
b†

αbαb
†
βbβ

〉 = 〈α|b†
αbαb

†
βbβ |α〉 = t2r2|α|4. (36)

Substituting the above expectation values into equation (8) gives the second-order coherence
function for a coherent state as

g(2) = t2r2|α|4
t2|α|2r2|α|2 = 1. (37)

This corresponds to the minimum classical value for g(2) so that measurement of the degree
of second-order coherence cannot distinguish between classical and coherent light.

Lastly, we consider chaotic light. In quantum mechanics, chaotic light is a mixture of
number states and is represented by the density operator ([34], p 158)

ρ =
∑

n

Pn|n〉〈n|. (38)
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For light in thermal equilibrium, let Pn be the probability of occurrence of a number state |n〉
with energy En = nh̄ω. The probability Pn is given by the Boltzmann distribution law applied
to discrete quantum states ([34], p 8),

Pn = e−nh̄ω/kT∑∞
n=0 e−nh̄ω/kT

= (1 − e−h̄ω/kT )
∑

n

e−nh̄ω/kT , (39)

where k is Boltzmann’s constant and T is the temperature in Kelvin. The expectation value of
the horizontal beam number operator is〈
b†

αbα

〉 = Tr
(
ρb†

αbα

) =
∑
n′

〈n′|ρb†
αbα|n′〉 =

∑
n′

∑
n

(1 − U)Un〈n′|n〉〈n|b†
αbα|n′〉

= (1 − U)
∑

n

Un〈n|b†
αbα|n〉, (40)

with U = exp(−h̄ω/kT ). Substituting the expectation value (28) and rearranging gives〈
b†

αbα

〉 = t2 U

1 − U
. (41)

Using the other expectation values for the number state as above, we easily get the results

〈
b
†
βbβ

〉 = r2 U

1 − U
,

〈
b†

αbαb
†
βbβ

〉 = t2r2 2U 2

(1 − U)2
. (42)

Substituting the above into equation (8) gives the degree of second-order coherence for a
chaotic state

g(2) = 2. (43)

Like the result with the coherent state this value lies in the classical range.

3.3. Comparison of theoretical and experimental results

GRA’s arrangement, figure 1, gives the degree of second-order coherence g(2) directly by the
measurement of Nt,Nr and Nc and use of equation (3). A value of g(2) � 1 would agree
with classical mechanics while a zero value would confirm quantum mechanics. In practice,
experimental error prevents an exact zero value. Therefore, before comparing experimental
and theoretical results, we first derive, following GRA [22], a practical quantum-mechanical
prediction.

Let N be the number of decays per second in the window of photomultiplier PM1 of
efficiency ε1. Then, N1 = ε1N is the number of ν1 photons detected per second by PM1.
From the atomic decay law (1), the probability P2 of a ν2 photon partner of a ν1 photon entering
the beam splitter during a gate ω triggered by ν1 is 1 − exp(−ω/τ). Because of the angular
correlation between ν1 and ν2, the probability P2 is increased by a factor a slightly greater
than 1 [41]. This probability is denoted by f (ω) = a[1 − exp(−ω/τ)], and is a number close
to 1 in GRA’s experiment. The probability P2 is also increased by accidental ν2’s. These are
ν2 photons that enter the beam splitter whose ν1 partners do not trigger a gate ω. Once a ν1

photon has triggered a gate, the ν1 photons resulting from Nω decays during the gate ω cannot
trigger another decay. Hence, their Nω ν2 partners are the accidental ν2 photons. Since Nω

is the number of accidental ν2’s entering the beam splitter during gate ω, N1Nω is the number
of accidental ν2’s entering the beam splitter per second. The probability of an accidental ν2

photon entering the beam splitter is therefore N1Nω/N1 = Nω. Thus,

P2 = f (ω) + Nω = N2

N1
, (44)
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Figure 3. Plot of the function g(2)(Nω) with f (w) = 0.9.

where

N2 = N1[f (ω) + Nω] (45)

is the number of ν2 photons that enter the beam splitter per second. Now, define εt and εr to
be the efficiencies of PMt and PMr , respectively. These efficiencies include the reflection and
transmission coefficients, the collection solid angle and the detector efficiency. The number
Nt of v2 photons transmitted is Nt = εtN2, while the number reflected is εrN2. Then, the
probabilities of detecting a transmitted v2 photon in PMt and a reflected v2 in PMr are

pt = Nt

N1
= εtN2

N1
= εt [f (ω) + Nω] , pr = Nr

N1
= εrN2

N1
= εr [f (ω) + Nω] . (46)

Since pt and pr are statistically independent classically, the probability of a coincidence count
becomes

pc = ptpr = εtεr [f (ω) + Nω]2 = εtεr [f (ω)2 + 2Nωf (ω) + N2ω2]. (47)

The term f (ω)2 suggests a repeated detection of the same photon. Since this is not possible,
f (ω)2 is set equal to zero. Thus, substituting f (ω)2 = 0 into equation (47) gives the quantum-
mechanical experimental expression for pc. Substituting pt , pr and pc into equation (3) gives

g(2)(Nω) = 2Nωf (ω) + N2ω2

[f (ω) + Nω]2
. (48)

A plot of this function is given in figure 3. It is noticeable that as the erroneous Nω ν2 photon
count increases compared to f (ω) the value of g(2) approaches the classical minimum value.
GRA’s experimental results closely agree with the plot of figure 3, and therefore confirm the
quantum-mechanical anticorrelation of the two beams.

4. GRA’s interference experiment

In the second interference experiment, GRA built a Mach–Zehnder interferometer around
the first beam splitter as shown in figure 4. Quantum mechanics predicts that each beam is
oppositely modulated and that the fringe visibility of each beam as a function of path difference
(or of a phase shift produced by a phase shifter) is 1. In the experiment, interference fringes
with visibility greater than 98% were observed. Although the interference is expected, this is
perhaps the first experiment to demonstrate interference for a genuine single-photon state, as
GRA themselves have emphasized.
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Figure 4. GRA’s interference experiment. The experiment uses the same novel gating system (not
shown) to produce a near ideal single-photon state as in GRA’s which-path experiment.

5. GRA’s experiments according to CIEM

GRA concluded from their results that in a which-path measurement a photon does not
split at the beam splitter and therefore chooses only one path, but, in a one-photon-at-a-time
interference experiment a photon splits at the beam splitter and interferes with itself to produce
an interference pattern. They view this result as experimental confirmation of particle–wave
duality, and hence, of Bohr’s principle of complementarity.

Without doubt, GRA’s experiments with the novel and ingenious gating system constitute
an important experimental confirmation of quantum mechanics for genuine single-photon
states. But, by providing a detailed wave model of both experiments, we want to show that
GRA’s experiments cannot be regarded as confirmation of particle–wave duality, and hence,
nor of Bohr’s principle of complementarity.

We refer the reader to [17], but particularly [18] for details of CIEM. Before proceeding
we first give an outline of CIEM as given in [13], p 300.

5.1. Outline of CIEM

In what follows we use the radiation gauge in which the divergence of the vector potential
is zero ∇ · A(x, t) = 0, and the scalar potential is also zero φ(x, t) = 0. In this gauge the
electromagnetic field has only two transverse components. Heavyside–Lorentz units are used
throughout.

Second quantization is effected by treating the field A(x, t) and its conjugate momentum
Π(x, t) as operators satisfying the equal-time commutation relations. This procedure is
equivalent to introducing a field Schrödinger equation∫

H(A′,Π′)	[A, t] dx′ = ih̄
∂	[A, t]

∂t
, (49)

where the Hamiltonian density operator H is obtained from the classical Hamiltonian density
of the electromagnetic field,

H = 1
2 (E2 + B2) = 1

2 [c2Π2 + (∇ × A)2], (50)
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by the operator replacement Π → −ih̄δ′/δ′A. A′ is shorthand for A(x′, t). In earlier articles
[13, 18] δ′/δ′A (without the prime) was defined as the variational derivative10. This definition
leads to the equal-time commutation relations

[Ai(x, t),�j (x
′, t)] = −1

c
[Ai(x, t), Ej (x

′, t)] = ih̄δij δ
3(x − x′).

Unfortunately, these commutation relations are known to be inconsistent with both Gauss’s
law in free space, ∇ · E = 0, and the Coulomb gauge condition, ∇ · A = 0, since it follows
from these that either of the two left-hand side terms is zero, whereas the divergence of the
delta function δ3(x−x′) is not zero. We noted this inconsistency in our original development
of CIEM [18], but justified this simplification by noting that it leads to the correct equations
of motion. This justification, however, has recently been criticized by Struyve in [31], p 88.11

As is well known, the commutation relations that are consistent with ∇ ·E = 0 and ∇ ·A = 0
are

[Ai(x, t),�j (x
′, t)] = ih̄δtr

ij (x − x′), (51)

where δtr
ij (x − x′) is the transverse delta function defined by [42, 43]

δtr
ij (x − x′) = 1

(2π)3

∫
eik·(x−x′)

(
δij − kikj

k2

)
d3k =

(
δij − ∂i∂j

∇2

)
δ3(x − x′).

We can establish consistency with the correct equal-time commutation relations, equation (51),
by modifying the definition of the momentum operator as follows:

�i = −ih̄
δ

δAi

= −ih̄

(
δ′

δ′Ai

−
∑

k

∂i∂k

∇2

δ′

δ′Ak

)
,

where δ′/δ′Ak is the usual functional derivative defined in footnote 10.
We note that the definition of the normal mode momentum operator given in the original

article in which CIEM is developed [18] is consistent with the correct commutation relations,
equation (51), and does not need modification.

The solution of the field Schrödinger equation is the wave functional 	[A, t]. The square
of the modulus of the wave functional |	[A, t]|2 gives the probability density for a given
field configuration A(x, t). This suggests that we take A(x, t) as a beable. Thus, as we have
already said, the basic ontology is that of a field; there are no photon particles.

We substitute 	 = R[A, t] exp(iS[A, t]/h̄), where R[A, t] and S[A, t] are two real
functionals which codetermine one another, into the field Schrödinger equation. Then,
differentiating, rearranging and equating imaginary terms gives a continuity equation:

∂R2

∂t
+ c2

∫
δ

δA′

(
R2 δS

δA′

)
dx′ = 0. (52)

10 For a scalar function φ the variational or functional derivative is defined as

δ′

δ′φ
= ∂

∂φ
− �i

(
∂

∂
(

∂φ
∂xi

)
)

([44], p 494). For a vector function A we have defined it to be

δ

δA
= δ

δAx

i +
δ

δAy

j +
δ

δAz

k,

where each component is defined in the same way as for the scalar function.
11 We would like to thank one of the referees for pointing out this reference and for re-emphasizing this inconsistency.
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The continuity equation is interpreted as expressing conservation of probability in function
space. Equating real terms gives a Hamilton–Jacobi-type equation:

∂S

∂t
+

1

2

∫ (
δS

δA′

)2

c2 + (∇ × A′)2 +

(
−h̄2c2

R

δ2R

δA′2

)
dx′ = 0. (53)

This Hamilton–Jacobi equation differs from its classical counterpart by the extra classical term

Q = −1

2

∫
h̄2c2

R

δ2R

δA′2 dx′, (54)

which we call the field quantum potential.
By analogy with classical Hamilton–Jacobi theory we define the total energy and

momentum conjugate to the field as

E = −∂S[A]

∂t
, Π = δS[A]

δA
. (55)

In addition to the beables A(x, t) and Π(x, t), we can define other field beables: the electric
field, the magnetic induction, the energy and energy density, the momentum and momentum
density, the intensity, etc. Formulae for these beables are obtained by replacing Π by δS/δA
in the classical formula.

Thus, we can picture an electromagnetic field as a field in the classical sense, but with
the additional property of nonlocality. That the field is inherently nonlocal, meaning that an
interaction at one point in the field instantaneously influences the field at all other points,
can be seen in two ways: first, by using Euler’s method of finite differences a functional can
be approximated as a function of infinitely many variables: 	[A, t] → 	(A1,A2, . . . , t).
Comparison with a many-body wavefunction ψ(x1,x2, . . . , t) reveals the nonlocality. The
second way is from the equation of motion of A(x, t), i.e., the free field wave equation. This
is obtained by taking the functional derivative of the Hamilton–Jacobi equation, (53):

∇2A − 1

c2

∂2A

∂t2
= δQ

δA
. (56)

In general, δQ/δA will involve an integral over space in which the integrand contains A(x, t).
This means that the way A(x, t) changes with time at one point depends on A(x, t) at all
other points, hence the inherent nonlocality.

5.2. Normal mode coordinates

To proceed it is mathematically easier to expand A(x, t) and Π(x, t) as Fourier series

A(x, t) = 1

V
1
2

∑
kµ

ε̂kµqkµ(t) eik·x, Π(x, t) = 1

V
1
2

∑
kµ

ε̂kµπkµ(t) e−ik·x, (57)

where the field is assumed to be enclosed in a large volume V = L3. The wavenumber k runs
from −∞ to +∞ and µ = 1, 2 is the polarization index. For A(x, t) to be a real function we
must have

ε̂−kµq−kµ = ε̂kµq∗
kµ. (58)

Substituting equations (50) and (57) into equation (49) gives the Schrödingier equation in
terms of the normal mode coordinates qkµ:

1

2

∑
kµ

(
−h̄2c2 ∂2	

∂q∗
kµ∂qkµ

+ κ2q∗
kµqkµ	

)
= ih̄

∂	

∂t
. (59)
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The solution 	(qkµ, t) is an ordinary function of all the normal mode coordinates and
this simplifies proceedings.

We substitute 	 = R(qkµ, t) exp[iS(qkµ, t)/h̄], where R(qkµ, t) and S(qkµ, t) are
real functions which codetermine one another, into equation (59). Then, differentiating,
rearranging and equating real terms gives the continuity equation in terms of normal modes:

∂R2

∂t
+

∑
kµ

[
c2

2

∂

∂qkµ

(
R2 ∂S

∂q∗
kµ

)
+

c2

2

∂

∂q∗
kµ

(
R2 ∂S

∂qkµ

)]
= 0. (60)

Equating imaginary terms gives the Hamilton–Jacobi equation in terms of normal modes:

∂S

∂t
+

∑
kµ

[
c2

2

∂S

∂q∗
kµ

∂S

∂qkµ

+
κ2

2
q∗

kµqkµ +

(
−h̄2c2

2R

∂2R

∂q∗
kµ∂qkµ

)]
= 0. (61)

The term

Q = −
∑
kµ

h̄2c2

2R

∂2R

∂q∗
kµ∂qkµ

(62)

is the field quantum potential. Again, by analogy with the classical Hamilton–Jacobi theory
we define the total energy and the conjugate momenta as

E = −∂S

∂t
, πkµ = ∂S

∂qkµ

, π∗
kµ = ∂S

∂q∗
kµ

. (63)

The square of the modulus of the wave function |	(qkµ, t)|2 is the probability density for each
qkµ(t) to take a particular value at time t. Substituting a particular set of values of qkµ(t) at
time t into equation (57) gives a particular field configuration at time t, as before. Substituting
the initial values of qkµ(t) gives the initial field configuration.

The normalized ground state solution of the Schrödinger equation is given by

	0 = N exp


−

∑
kµ

(κ/2h̄c)q∗
kµqkµ


 exp

(
−

∑
k

iκct/2

)
, (64)

with N = ∏∞
k=1(k/h̄cπ)

1
2 .12 Higher excited states are obtained by the action of the creation

operator a
†
kµ:

	nkµ
=

(
a
†
kµ

)nkµ√
nkµ!

	0 e−inkµκct . (65)

For a normalized ground state, the higher excited states remain normalized. For the ease of
writing we will not include the normalization factor N in most expressions, but normalization
of states will be assumed when calculating expectation values.

Again, the formula for the field beables is obtained by replacing the conjugate momenta
πkµ and π∗

kµ by ∂S/∂qkµ and ∂S/∂q∗
kµ in the corresponding classical formula. The following

is a list of formulae for the beables:
The vector potential A(x, t) is given in equation (57). The electric field is

E(x, t) = −cΠ(x, t) = −1

c

∂A

∂t
= − c

V
1
2

∑
kµ

ε̂kµ

∂S

∂qkµ

e−ik·x. (66)

12 The normalization factor N is found by substituting q∗
kµ = fkµ + igkµ and its conjugate into 	0 and using the

normalization condition
∫ ∞
−∞ |	0|2 dfkµ dgkµ = 1, with dfkµ ≡ dfk11 dfk12 dfk21 . . ., and similarly for dgkµ.
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The magnetic induction is

B(x, t) = ∇ × A(x, t) = i

V
1
2

∑
kµ

(k × ε̂kµ)qkµ(t) eik·x. (67)

We may also define the energy density, which includes the quantum potential density (see
[18]), but we will not write these here as we will not need them. The total energy is found by
integrating the energy density over V to get

E = −∂S

∂t
=

∑
kµ

[
c2

2

∂S

∂q∗
kµ

∂S

∂qkµ

+
κ2

2
q∗

kµqkµ +

(
−h̄2c2

2R

∂2R

∂q∗
kµ∂qkµ

)]
. (68)

The intensity is equal to the momentum density multiplied by c2:

I(x, t) = c2G = −ic2

V

∑
kµ

∑
k′µ′

[
ε̂k′µ′ × (k × ε̂kµ)

∂S

∂qk′µ′
qkµ ei(k−k′)·x

]
. (69)

We have adopted the classical definition of intensity in which the intensity is equal to the
Poynting vector (in Heavyside–Lorentz units), i.e., I = c(E × B). The definition leads to a
moderately simple formula for the intensity beable. We note that the above definition contains
a zero point intensity. But, because I is a vector (whereas energy is not) the contributions to
the zero point intensity from individual waves with wave vector k cancel each other because
of symmetry; for each k there is another k pointing in the opposite direction. The above,
however, is not the definition normally used in quantum optics. This is probably because,
although it leads to a simple formula for the intensity beable, it leads to a very cumbersome
expression for the intensity operator in terms of the creation and annihilation operators:

Î = −h̄c2

4V

∑
kµ

∑
k′µ′

[
k

k′ ε̂kµ × (k′ × ε̂k′µ′) − k′

k
(k × ε̂kµ) × ε̂k′µ′

]

× [
âkµâk′µ′ ei(k+k′)·x − âkµâ

†
k′µ′ ei(k−k′)·x − â

†
kµâk′µ′ e−i(k−k′)·x + â

†
kµâ

†
k′µ′ e−i(k+k′)·x]

.

(70)

In quantum optics the intensity operator is defined instead as Î = c(Ê
+ × B̂

− − B̂
− × Ê

+
),

and leads to a much simpler expression in terms of creation and annihilation operators

Î = h̄c2

V

∑
kµ

∑
k′µ′

k̂
√

kk′â†
kµâk′µ′ ei(k′−k)·x. (71)

This definition is justified because it is proportional to the dominant term in the interaction
Hamiltonian for the photoelectric effect upon which instruments that measure intensity are
based. We note that the two forms of the intensity operator lead to identical expectation values
and perhaps further justify the simpler definition of the intensity operator.

From the above we see that objects such as qkµ, πkµ, etc. regarded as time-independent
operators in the Schrödinger picture of the usual interpretation, become functions of time in
CIEM.

For a given state 	(qkµ, t) of the field we determine the beables by first finding ∂S/∂qkµ

and its complex conjugate using the formula

S =
(

h̄

2i

)
ln

(
	

	∗

)
. (72)

This gives the beables as functions of the qkµ(t) and q∗
kµ(t). The beables can then be obtained

in terms of the initial values by solving the equations of motion for qkµ(t) and q∗
kµ(t). There
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are two alternative but equivalent forms of the equations of motion. The first follows from the
classical formula

πkµ = ∂L
∂
( dqkµ

dt

) = 1

c2

dq∗
kµ

dt
, (73)

where L is the Lagrangian density of the electromagnetic field, by replacing πkµ by ∂S/∂qkµ.
This gives the equations of motion

1

c2

dq∗
kµ(t)

dt
= ∂S

∂qkµ(t)
. (74)

The second form of the equations of motion for qkµ is obtained by differentiating the Hamilton–
Jacobi equation (61) by q∗

kµ. This gives the wave equations

1

c2

d2q∗
kµ

dt2
+ κ2q∗

kµ = − ∂Q

∂qkµ

. (75)

The corresponding equations for qkµ are the complex conjugates of the above. These equations
of motion differ from the classical free field wave equation by the derivative of the quantum
potential. From this it follows that where the quantum potential is zero or small the quantum
field behaves like a classical field. In applications we will obviously choose to solve the
simpler equation (74).

We conclude with a few words to clarify our model. The electromagnetic field beables
are E(x, t) and B(x, t) and are objectively existing entities in real space. The state
	 = R exp[iS/h̄] is made up of the R and S functionals. By thinking in terms of the
approximation of a functional as a function of infinitely many variables or in terms of normal
mode coordinates we can picture R and S as connecting the field coordinates and shaping the
behaviour of the field through the equations of motion (74) or (75), but the R and S beables
(and hence the state 	) are not the electromagnetic field itself. The R and S beables co-
determine one another and the motion of the field can be determined from either one without
reference to the other. This is reflected in the two possible forms of the equations of motion.

5.3. GRA’s which-path experiment according to CIEM

Refer to figure 1. To keep the mathematics simple we assume (a) a symmetrical beam splitter
so that the reflection and transmission coefficients are equal and given by r = t = 1/

√
2, (b)

a π/2 phase shift upon reflection and (c) no phase shift upon transmission. With this in mind,
the state of the photon after the beam splitter but before the mirrors and phase shifter is

	I = 1√
2
(	α + i	β), (76)

where 	α and 	β are the solutions of the normal mode Schrödinger equation and are given
by

	α(qkµ, t) =
(

2κα

h̄c

) 1
2

α∗
kαµα

	0 e−iκαct , 	β(qkµ, t) =
(

2κβ

h̄c

) 1
2

β∗
kβµβ

	0 e−iκβct ,

	0(qkµ, t) = N exp


−

∑
kµ

(κ/2h̄c)q∗
kµqkµ


 exp

(
−

∑
k

iκct/2

)
.

(77)

The magnitudes of the k-vectors are equal, i.e., kα = kβ = k0. The αkαµα
normal mode

coordinates represent the horizontal beam and the βkβµβ
coordinates represent the vertical
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beam. It is clear that the single-photon input state 	i(qkµ, t) = (2κ0/(h̄c))
1
2 q∗

k0µ0
(t)	0 e−iκ0ct

is split by the beam splitter into two beams. This remains true irrespective of whether a
subsequent measurement is a which-path measurement or it is the observation of interference.
The mathematical description is unique.

In CIEM the normal mode coordinates are regarded as functions of time and represent
an actually existing electromagnetic field. The modulus squared of the wavefunction is a
probability density from which the probabilities for the normal modes to have particular
values are found. The totality of these probabilities gives the probability for a particular field
configuration. Thus, the ontology is that of a field; there are no photon particles. In fact, for
a number state the most probable field configuration is one or more plane waves which, in
general, are nonlocal ([18], p 326). As we mentioned earlier, in CIEM we use the term photon
to refer to a quantum of energy h̄ω (or an average about this value for a wave packet) without
in any way implying particle properties.

To find the equations of motion for the normal mode coordinates we first find S from
	I = R(qkµ, t) exp(iS(qkµ, t)) and then substitute into

1

c2

dq∗
kµ(t)

dt
= ∂S

∂qkµ(t)
. (78)

This gives the equations of motion

dα∗
kαµα

dt
= c2 ∂S

∂αkαµα

= h̄c2

2

i(
αkαµα

− iβkβµβ

) , (79)

dβ∗
kβµβ

dt
= c2 ∂S

∂βkβµβ

= h̄c2

2

1(
αkαµα

− iβkβµβ

) , (80)

dq∗
kµ

dt
= c2 ∂S

∂qkµ

= 0, for k �= ±kα,±kβ. (81)

Equations (79) and (80) are coupled differential equations and the coupling indicates that the
two beams are nonlocally connected. The solutions are

α∗
kαµα

(t) = α0 ei(ωαt+σ0), β∗
kβµβ

(t) = β0 ei(ωβ t+τ0), q∗
kµ(t) = qkµ0 eiζkµ0

for k �= ±kα,±kβ, (82)

where σ0 and τ0 are integration constants corresponding to the initial phases, and α0 and β0 are
constant initial amplitudes. The omega’s, ωα = h̄c2

/
4α2

0 and ωβ = h̄c2
/

4β2
0 , are nonclassical

frequencies which depend on the amplitudes α0 and β0. The vector potential, electric intensity,
magnetic induction and intensity beables are given by the formulae

A(x, t) = 1

V
1
2

∑
kµ

ε̂kµqkµ(t) eik·x,

E(x, t) = −cΠ(x, t) = −1

c

∂A

∂t
= − c

V
1
2

∑
kµ

ε̂kµ

∂S

∂qkµ

e−ik·x,

B(x, t) = ∇ × A(x, t) = i

V
1
2

∑
kµ

(k × ε̂kµ)qkµ(t) eik·x,

I(x, t) = c2G = −ic2

V

∑
kµ

∑
k′µ′

[
ε̂k′µ′ × (k × ε̂kµ)

∂S

∂qk′µ′
qkµ ei(k−k′)·x

]
.

(83)



11560 P N Kaloyerou

Substituting equations (79)–(82) into the above formulae gives the field beables associated
with the state 	I :

AI (x, t) = 2

V
1
2

(
ε̂kαµα

α0 cos �α + ε̂kβµβ
β0 cos �β

)
+

uI (x)

V
1
2

,

EI (x, t) = −h̄c

2V
1
2

(
ε̂kαµα

α0
sin �α +

ε̂kβµβ

β0
sin �β

)
,

(84)

BI (x, t) = −2

V
1
2

[(
kα × ε̂kαµα

)
α0 sin �α +

(
kβ × ε̂kβµβ

)
β0 sin �β

]
+

vI (x)

V
1
2

,

II (x, t) = h̄c2

2V
(kα + kβ − kα cos 2�α − kβ cos 2�β) − fI (x)gI (x, t)

V
,

(85)

with �α = kα · x − ωαt − σ0 and �β = kβ · x − ωβt − τ0, and

uI (x) =
∑
kµ

k �=±kα,±kβ

ε̂kµqkµ eik·x,vI (x) = ∇ × uI (x) = i
∑
kµ

k �=±kα,±kβ

(k × ε̂kµ)qkµ eik·x, (86)

f I (x) = ih̄c2
∑
kµ

k �=±kα,±kβ

ε̂kαµα
× (k × ε̂kµ)qkµ eik·x, gI (x, t) = sin �α + sin �β. (87)

Complementarity is not a direct interpretation of the mathematical formalism, so that the
uniqueness of the mathematical description is not reflected in the duality of complementary
concepts. The ontology of CIEM, on the other hand, is a direct interpretation of the elements
of the mathematical formalism. The beables above therefore reflect the splitting of the state
	i into two beams. In other words, the photon always splits at the beam splitter irrespective
of the nature of any planned future measurement.

Quantum mechanics predicts that in a which-path measurement a photon will be detected
in only one path. Feeble light experiments of the past have confirmed this prediction indirectly,
while GRA’s which-path experiment provides direct confirmation. Our CIEM model must
therefore explain how a photon is detected in only one path, even though the photon must
split at the beam splitter. To see how this comes about we outline the interaction of the
electromagnetic field in state 	I with the photomultipliers. For mathematical simplicity we
model the photomultipliers PMt and PMr as hydrogen atoms. We assume that the incident
photon has sufficient energy to ionize one of the hydrogen atoms.

The treatment we give here is a short summary of a more detailed outline given in ([13],
p 310). The initial state of the field before interaction with the hydrogen atom is given by
equation (76). The initial state of the hydrogen atom is

ui(x, t) = 1√
πa3

e−r/a e−iEei t/h̄, (88)

where a = 4πh̄2/µe2 is the Bohr magneton. With the initial state 	Ikµi(qkµ,x, t) =
	Ikµ

(qkµ, t)ui(x, t), the Schrödinger equation

ih̄
∂	

∂t
= (HR + HA + HI)	 (89)
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can be solved by using the standard perturbation theory. HR,HA and HI are the free radiation,
free atomic, and interaction Hamiltonians, respectively, and are given by

HR =
∑
kµ

(
a
†
kµakµ +

1

2

)
h̄ωk, HA = −h̄2

2µ
∇2 + V (x),

HI = ih̄e

µc

(
h̄c

2V

) 1
2 ∑

kµ

1√
k
akµ eik·xε̂kµ · ∇,

(90)

with ωk = kc and µ = memn/(me + mn) is the reduced mass. The final solution is

	 = 	Ikµi(qkµ,x, t) − 	0(qkµ, t)

V

∑
n

η0n(t)ε̂k0µ0 · ken

1√
V

ei(ken·x−Eent/h̄), (91)

with

η0n(t) =
(

e

µc

)√
h̄c

2V

[
(i − eiφ)√

2k0

] [
h̄√

V πa3

8πa3(
1 + a2k2

en

)2

] (
1 − eiE0n,Ikµi t/h̄

E0n,Ikµi

)
. (92)

E0n,Ikµi is given by

E0n,Ikµi = E0 + Een − EIkµ
− Eei. (93)

Equation (91) clearly shows that one entire photon is absorbed. This is further emphasized by
the integral

∑
kµ

1√
k

∫
	∗

Nkµ
akµ	Ikµ

dqkµ = 1√
2k0

(i − eiφ)

∫
	∗

Nkµ
	0 dqkµ

= 1√
2k0

(i − eiφ)δNkµ0δkk0δµµ0, (94)

which is the part of the matrix element HNkµn,Ikµi used in obtaining the final solution. This
term shows that if the interaction takes place at all then an entire electromagnetic quantum
must be absorbed by the hydrogen atom.

The initial state 	Ikµ
represents a single photon divided between the two beams, but in the

interaction with an atom positioned in one of the beams, the entire photon must be absorbed.
Given that the interferometer arms can be of arbitrary length such absorption must in general
be nonlocal. In this way we can explain why a photon that always divides at the beam splitter
nevertheless registers in only one path. The fact that this wave model exists prevents GRA’s
which-path experiment from being regarded as confirmation of the particle behaviour of light.

5.4. GRA’s interference experiment according to CIEM

Refer to figure 4. Using the same phase and amplitude changes as in the previous section, and
tracing the development of the two beams after BM2, we arrive at the wavefunction

	II = −1

2
	c(1 + eiφ) +

i

2
	d(1 − eiφ). (95)
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By following a similar procedure to that of region I, we can find the S corresponding to 	II

and hence set up and solve the equations of motion. Using these solutions the beables for
region II are found to be

AII (x, t) = 2

V
1
2

(
ε̂kcµc

c0 cos �c + ε̂kdµd
d0 cos �d

)
+

uII (x)

V
1
2

,

EII (x, t) = −h̄c

2V
1
2

(
ε̂kαµα

c0
(1 + cos φ) sin �c +

ε̂kdµd

d0
(1 − cos φ) sin �d

)
,

BII (x, t) = −2

V
1
2

[(
kc × ε̂kcµc

)
c0 sin �c +

(
kd × ε̂kdµd

)
d0 sin �d

]
+

vII (x)

V
1
2

,

III (x, t) = h̄c2

2V
[kc(1 + cos φ) + kd(1 − cos φ) − kc(1 + cos φ) cos 2�c

+ kd(1 − cos φ) cos 2�d)] − f II (x)gII (x, t)

V
,

(96)

with

uII (x) =
∑
kµ

k �=±kc,±kd

ε̂kµqkµ eik·x,

vII (x) = i
∑
kµ

k �=±kc,±kd

(k × ε̂kµ)qkµ eik·x = ∇ × uII (x),
(97)

f II (x) = ih̄c2

V

∑
kµ

k �=±kc,±kd

ε̂k0µ0 × (k × ε̂kµ)qkµ eik·x,

gII (x, t) = (1 + cos φ) sin �c + (1 − cos φ) sin �d,

(98)

and with �c = kc ·x − ωct − χ0 and �d = kd ·x − ωdt − ξ0.
The wavefunction and the beables clearly show interference. For example, for φ = 0 the

d-beam is extinguished and for φ = π the c-beam is extinguished by interference.

6. Comments on some other recent experimental tests of complementarity

In the proposed experiment of Ghose et al [2], light is incident on a prism at an angle greater
than the critical angle and hence undergoes total internal reflection. A second prism placed
less than a wavelength from the first allows light to tunnel into the transmitted channel.
Quantum mechanics predicts perfect anticoincidence. This is interpreted by Ghose et al, as
is usual, as which-path information and hence as particle behaviour. Transmitted photons
necessarily tunnel through the gap between the prisms, a phenomenon which the authors
interpret as wave behaviour. In this way, the authors claim that wave and particle behaviour are
observed in the same experiment in contradiction to Bohr’s principle of complementarity. This
experiment has since been performed by Mizobuchi et al [3] using a GRA single-photon source,
but as we mentioned earlier, the statistical accuracy of their results has been questioned in
[4–6].

To resolve the technical difficulties with Mizobuchi et al’s experiment, Brida et al
following a suggested experiment by Ghose [5] and also employing the GRA single-photon
source, used a birefringent crystal to split a light beam into two beams (the ordinary and the
extraordinary beams) instead of using tunnelling between two closely spaced prisms. They
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interpreted the birefringent splitting as wave behaviour, while the perfect anticoincidence they
observed they interpreted as particle behaviour. Again, the claim is the observation of wave
and particle behaviour in the same experiment in contradiction of complementarity.

Afshar’s experiment is of the two-slit type. He first observes interference a short distance
in front of the slits and determines the position of the dark fringes. He then replaces the screen
with a wire grid such that the grid wires coincide with the dark fringes. A lens is placed after
the grid to form an image of the two slits. The images showed no loss of sharpness or intensity
as compared to the image of the two slits without the grid in position. Afshar concluded that
there was interference prior to formation of the image which he interpretes as wave behaviour.
He assumes that the images of the slits are formed by photons coming from the slit on the
same side as the image. He then interpretes image formation as providing path information,
and hence particle behaviour. Ashar concludes that particle and wave behaviour is observed
in the same experiment in contradiction of complementarity.

We do not agree that these experiments either disprove Bohr’s principle of
complementarity, or, as argued by Brida et al, that they can be viewed as a generalization
of Bohr’s principle of complementarity. Our reasons follow.

As for the GRA experiments, all the above experiments can be explained using CIEM, i.e.,
they can be explained entirely in terms of a wave model. One is therefore not forced to conclude
that these experiments require a generalization of Bohr’s principle of complementarity (a
generalization first suggested by Wootters and Zurek [8] as mentioned in the introduction), a
generalization which is severely flawed, as mentioned in the introduction. We will comment
further below.

Arguments from the perspective of complementarity can be put to show that these
experiments do not disprove complementarity. Let us first consider the experiments of
Mizobuchi et al and Brida et al. Bohr emphasized that only the final experimental result
(pointer reading) has physical significance and that an experiment should be viewed as a
whole, not further analyzable [19, 21]. We recall the statement of Wheeler, ‘No phenomenon
is a phenomenon until it is an observed phenomenon’ ([12], p 14). In these two experiments,
the observed results are anticoincidence detections which the above authors and advocates
of complementarity or its variants can reasonably and unambiguously attribute to particle
behaviour. The wave behaviour is not detected. It is therefore perfectly consistent for a
Bohrian to maintain that the experiments unambiguously define a particle model even if this
is counter-intuitive. The Afshar experiment avoids this criticism because the presence of the
wire grid physically detects the interference. But, the Afshar experiment still fails because of
the first point above, namely that CIEM provides a wave model of image formation by a large
series of single photon detections.

Another point to consider is that the mutually exclusive wave and particle complementary
concepts are not related to the mathematical formalism of the quantum theory. In this way they
differ from complementary concepts such as position and momentum or the components of
angular momentum which are not mutually exclusive classical concepts and are represented in
the mathematical formalism of the quantum theory by Heisenberg uncertainty relations. In this
case, what is called wave or particle behaviour in a given experiment is somewhat arbitrary.
Apart from other points, this arbitrariness is an important reason why we feel complementarity
can neither be proved nor disproved.

We now comment on a widely accepted generalization of complementarity by Wootters
and Zurek in their influential article [8]. This generalization admits partial wave and partial
particle behaviour in the same experiment. Based on this generalization Wootters and Zurek
[8], and later Yasin and Greenberger [9], cast particle–wave duality in a mathematical form.
We have argued in earlier articles [10] that far from being a generalization of complementarity,
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this approach in fact contradicts complementarity. From the mathematical perspective, these
mathematical relations are constructs appended to the formalism of the quantum theory but
not derived from it. As a measure of coherence they can be thought of as useful heuristic
rules, but for the reasons we will give, can be attributed no more fundamental significance
than this. For detailed arguments against this generalization we refer the reader to [10] and
restrict ourselves here to briefly emphasizing aspects of complementarity which demonstrate
our point of view.

In his explanations of his principle of complementarity [19–21], Bohr repeatedly
emphasized the mutual exclusiveness of complementary concepts, and the requirement of
mutually exclusive experimental arrangements for their correct use or definition. He further
emphasized that complementary concepts are abstractions to aid thought, and cannot be
attributed physical reality. It seems to the present author that Bohr was concerned to provide
a framework for the correct use of classical language or concepts. Thus, for the same physical
object to be both a wave and a particle is, quite simply, a contradiction of definitions. This,
the present author believes, is what led Bohr to emphasize that complementary concepts
could not be attributed physical reality. By insisting on mutually exclusive experimental
arrangements for the realization of complementary concepts, Bohr, in the authors view,
allowed for the use of classical language/concepts in a way that avoids contradiction. It
is for these reasons that we regard the Wootters and Zurek generalization of complementarity
in terms of partial particle behaviour/knowledge and partial wave behaviour/knowledge as
the complete antithesis of Bohr’s principle of complementarity. Even apart from Bohr’s
teachings, what can it mean for a physical object to be partially a wave and partially a
particle? Above, we made a distinction between particle and wave complementary concepts
and other pairs of complementary concepts that Bohr did not make. Our arguments here
need not apply to complementary concepts such as position and momentum, which classically
are not mutually exclusive concepts. We note two things: first, the Wootters and Zurek
generalization of complementarity is in terms of wave and particle concepts. Second,
from the point of view of interpretation, particle and wave complementary concepts are
the most fundamental, and lie at the heart of the interpretational issues of the quantum
theory.

The experiment of Kim et al concerns both complementarity and the Wheeler delayed-
choice issue, but its significance goes beyond these issues. The results of this experiment
appear to suggest that a present measurement affects a past measurement. The Wheeler
delayed-choice experiments indicate that a present measurement either creates or changes
the past history leading to a particular result (there are subtle differences between Wheeler’s
and Bohr’s positions which are discussed in [13], section 1). The Kim et al and Wheeler
delayed-choice experiments differ in that the past history is not actually observed in Wheeler’s
experiment, whereas in Kim et al’s experiment it is the result of an actual past measurement
that is changed by a measurement in the present. We will leave a detailed discussion of
this experiment for a later article, but make one observation. The experiment uses a pair of
correlated photons produced by the process of spontaneous parametric down conversion. By
detecting the photon partner after the first photon is detected, the earlier measured wave or
particle behaviour of the first photon is determined. What seems to have been left out of the
Kim et al analysis is that once the first photon is detected and the state of the EPR partner
changes accordingly, thereafter the EPR correlation is broken. Hence, any measurement
performed on the second photon can have no effect on its partner. This is a firm prediction of
quantum mechanics. Nevertheless, the strange result in which a present measurement appears
to determine the outcome of an earlier measurement needs explanation. Other articles relating
to this issue can be found in [45].
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7. Conclusion

Their ingenious gating system allowed GRA to test, perhaps for the first time, quantum-
mechanical predictions for a single-photon state. Interference is confirmed in the obvious
way. The which-path predictions are also confirmed; the photon is detected in only one
path. What we have shown though, is that a wave model (CIEM) can explain this result. It
cannot therefore be concluded that the detection of the photon on one path confirms particle
behaviour. In a particle model, the photon takes one path at the beam splitter and is detected
in that path, whereas in our wave model the photon splits at the beam splitter, is nonlocally
absorbed, and is again detected in only one path. Since the which-path measurement does
not confirm particle behaviour, Bohr’s principle of complementarity is also not confirmed,
contrary to what is claimed by GRA. We conclude then, that GRA’s experiments do not
confirm complementarity. We may further add that if complementary is accepted, Wheeler’s
delayed-choice experiments lead to very strange conclusions: either history is changed at
the time of measurement, or history is created at the time of measurement [13, 46]. CIEM,
on the other hand, explains Wheeler’s delayed-choice experiments in a unique and causal way.
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[3] Mizobuchi Y and Ohtaké Y 1992 Phys. Lett. A 168 1
[4] Unnikrishnan C S and Murthy S A 1996 Phys. Lett. A 221 1
[5] Ghose P 1999 Testing Quantum Mechanics on a New Ground (Cambridge: Cambridge University Press)
[6] Brida G, Genovese M, Gramegna M and Predazzi E 2004 Phys. Lett. A 328 313
[7] Afshar S S 2003 Preprint quant-ph/030503
[8] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[9] Greenberger D M and Yasin A 1988 Phys. Lett A 128 391

[10] Home D and Kaloyerou P N 1989 J. Phys. A: Math. Gen. 22 3253
Kaloyerou P N and Brown H R 1992 Physica B 176 78
Kaloyerou P N 1992 Found. Phys. 22 1345

[11] Kim Y, Yu R, Kulik S P, Shih Y and Scully M O 2000 Phys Rev. Lett. 84 1
[12] Wheeler J A 1978 Mathematical Foundations of Quantum Theory ed E R Marlow (New York: Academic) p 9
[13] Kaloyerou P N 2005 Physica A 355 297
[14] Wentzel G 1926 Z. Phys. 40 574

Mandel L, Sudarshan E C G and Wolf E 1964 Proc. Phys. Soc. (London) 84 435
Lamb W E Jr and Scully M O 1969 Polarization: Matière Rayonnement (Paris: Presses Universitaires de

France) p 363
[15] Mathews P M and Venkatesan K 1976 A Textbook of Quantum Mechanics (New Delhi: McGraw-Hill)

http://dx.doi.org/10.1103/PhysRev.30.644
http://dx.doi.org/10.1016/0375-9601(91)90686-3
http://dx.doi.org/10.1016/0375-9601(92)90319-H
http://dx.doi.org/10.1016/0375-9601(96)00559-2
http://www.arxiv.org/abs/quant-ph/030503
http://dx.doi.org/10.1103/PhysRevD.19.473
http://dx.doi.org/10.1016/0375-9601(88)90114-4
http://dx.doi.org/10.1088/0305-4470/22/16/016
http://dx.doi.org/10.1016/0921-4526(92)90600-W
http://dx.doi.org/10.1007/BF01883665
http://dx.doi.org/10.1103/PhysRevLett.84.1
http://dx.doi.org/10.1016/j.physa.2005.02.059
http://dx.doi.org/10.1007/BF01390456
http://dx.doi.org/10.1088/0370-1328/84/3/313


11566 P N Kaloyerou

[16] Kaloyerou P N 1985 PhD Thesis University of London
[17] Bohm D, Hiley B J and Kaloyerou P N 1987 Phys. Rep. 144 349
[18] Kaloyerou P N 1994 Phys. Rep. 244 287
[19] Bohr N 1982 Albert Einstein: Philosopher Scientist 3rd edn, ed P A Schilpp (La Salle, IL: Open Court) p 201
[20] Jammer M 1974 The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in

Historical Perspective (New York: Wiley)
[21] Bohr N 1928 Atti del Congresso Internazionale dei Fisici (Como, 11–20 September 1927) vol 2 (Bologna:

Zanichelli) p 565 (substance of the Como Lecture is reprinted in Nature 121 580 1928 and in Bohr N 1934
Atomic Theory and the Description of Nature Cambridge: Cambridge University Press p 52)

[22] Grangier P, Roger G and Aspect A 1986 EuroPhys. Lett. 1 173
[23] Aspect A 1990 Sixty-Two Years of Uncertainty ed A I Miller (New York: Plenum) p 45

Aspect A and Grangier P 1987 Hyperfine Interact. 37 3
Aspect A, Granger P and Roger G 1989 J. Opt. (Paris) 20 119

[24] Ghose P, Home D and Roy M N S 1993 Phys. Lett. A 183 267
[25] Ghose P 1996 Found. Phys. 26 1441
[26] Ghose P, Majumdar A S, Guha S and Sau J 2001 Preprint quant-ph/0102071
[27] Kemmer N 1939 Proc. R. Soc. A 173 91
[28] Einstein A 1905 Ann. D. Phys. 17 132
[29] Genovese M 2005 Phys. Rep. 413 319

Belinfante S J 1973 A Survey of Hidden-Variables Theories (Oxford: Pergamon)
Bell J S 1987 Speakable and Unspeakable in Quantum Mechanics (Cambridge: Cambridge University Press)

[30] Colin S 2005 PhD Thesis Universiteit Brussels (Preprint quant-ph/0301119)
[31] Struyve W 2005 PhD Thesis Universitiet Gent (Preprint quant-ph/0506243)
[32] Aspect A, Grangier P and Roger G 1981 Phys. Rev. Lett. 47 460
[33] Bransden B H and Joachain C J 1989 Quantum Mechanics (London: Prentice-Hall)
[34] Loudon R 1973 The Quantum Theory of Light (Oxford: Oxford University Press)
[35] Mandel L 1976 Progress in Optics vol 13, ed E Wolf (Amsterdam: North-Holland)
[36] Bronshtein I N and Semendyayev K A 1973 A Guide Book to Mathematics (New York: Springer)
[37] Caves C M 1980 Phys. Rev. Lett. 45 75
[38] OU Z Y, Hong C K and Mandel L 1987 Opt. Commun. 63 118
[39] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[40] Campos R A, Saleh B E A and Teich M C 1989 Phys. Rev. A 40 1371
[41] Fry E S 1973 Phys. Rev. A 8 1219
[42] Bjorken J D and Drell S D 1965 Relativistic Quantum Fields (New York: McGraw-Hill)
[43] Ryder L H 1996 Quantum Field Theory 2nd edn (Cambridge: Cambridge University Press)
[44] Schiff L I 1968 Quantum Mechanics 3rd edn (Kogakusha: McGraw-Hill)
[45] Mohrhoff U 1996 Am. J. Phys. 64 1468

Englert B -G, Scully M O and Walther H 1999 Am. J. Phys. 67 325
Mohrhoff U 1999 Am. J. Phys. 67 330
Zajonic A G, Wang L J, Zou X Y and Mandel L 1991 Nature 353 507
Kwiat P G, Steinberg A M and Chiao R Y 1992 Phys. Rev. A 45 7729
Herzog T J, Kwiat P G, Weinfurter H and Zeilinger A 1995 Phys. Rev. Lett. 75 3034
Pittman T B, Strekalov D V, Migdall A, Rubin M H, Sergienko A V and Shih Y H 1996 Phys. Rev. Lett. 77 1917

[46] Bohm D, Dewdney C and Hiley B J 1985 Nature 315 294

http://dx.doi.org/10.1016/0370-1573(87)90024-X
http://dx.doi.org/10.1016/0370-1573(94)90155-4
http://dx.doi.org/10.1007/BF02395701
http://dx.doi.org/10.1016/0375-9601(93)90453-7
http://dx.doi.org/10.1007/BF02272366
http://www.arxiv.org/abs/quant-ph/0102071
http://dx.doi.org/10.1016/j.physrep.2005.03.003
http://www.arxiv.org/abs/quant-ph/0301119
http://www.arxiv.org/abs/quant-ph/0506243
http://dx.doi.org/10.1103/PhysRevLett.47.460
http://dx.doi.org/10.1103/PhysRevLett.45.75
http://dx.doi.org/10.1016/0030-4018(87)90271-9
http://dx.doi.org/10.1103/PhysRevA.40.1371
http://dx.doi.org/10.1103/PhysRevA.8.1219
http://dx.doi.org/10.1119/1.18411
http://dx.doi.org/10.1119/1.19257
http://dx.doi.org/10.1119/1.19258
http://dx.doi.org/10.1038/353507b0
http://dx.doi.org/10.1103/PhysRevA.45.7729
http://dx.doi.org/10.1103/PhysRevLett.75.3034
http://dx.doi.org/10.1103/PhysRevLett.77.1917
http://dx.doi.org/10.1038/315294a0

	1. Introduction
	2. The GRA experiments
	3. GRA's which-path experiment
	3.1. $g_c^{(2)}$
	3.2. Quantum
	3.3. Comparison of theoretical and experimental results

	4. GRA's interference experiment
	5. GRA's experiments according to CIEM
	5.1. Outline of CIEM
	5.2. Normal mode coordinates
	5.3. GRA's which-path experiment according to CIEM
	5.4. GRA's interference experiment according to CIEM

	6. Comments on some other recent experimental tests of complementarity
	7. Conclusion
	Acknowledgments
	References

